

Using DDE and SAS/Macro for Automated Excel Report
Consolidation and Generation

Mengxi Li, Sandra Archer, Russell Denslow

Sodexho Campus Services, Orlando, FL

Abstract

Each week, the Sodexho Campus Services finance team
receives 80 Excel files containing weekly financial reports
from its operating units via email. System commands are
used to read the names of the files and generate macro
calls. Since the files are all in the same layout, DDE
(Dynamic Data Exchange) is used to pull the data from
each Excel file into SAS data sets. Base SAS code is used
to consolidate the data. DDE is used again to output the
consolidated data into standard Excel templates for
reporting purposes. SAS code automatically distributes the
reports via Outlook. This paper describes the process,
including some example code. SAS version 8 is used,
along with Excel and Outlook 2000 in a Windows 2000
operating system.

Introduction

Sodexho is the leading provider of food and facilities
management services in the U.S. and Canada, offering
innovative outsourcing solutions in food service,
housekeeping, grounds keeping, plant operations and
maintenance, asset and materials management, and
laundry services to corporations, health care and long
term care facilities, retirement centers, schools, military,
college campuses and remote sites. The Campus
Services Division is responsible for providing campus
dining, facility management, concessions and arena
management services to universities, colleges and
independent schools across the United States. The
purpose of this project is to collect the weekly operating
financial statements from 80 district managers in the
Campus Services division.

Each district manager has an Excel workbook that is used
to input weekly sales, operating costs, and other weekly
financial results. After entering the data for all operational
sites, the Excel workbook will automatically generate a
single Excel sheet “extract”, which is emailed by the district
manager to our team. Since each Excel worksheet
received by our team is in the same format, we can use
DDE to pull the data in to SAS. After data consolidation
and cleaning, DDE is again used to generate reports.

Receiving the Excel Files

When the files are received via email, they are saved
in one directory for that week. We now have a
directory containing all Excel extract files from each
district manager.

Generating Macro Calls

We have a macro “loopit” containing DDE code that
needs to be run for every Excel file. Since the file names
may change from week to week, we want to avoid re-
typing the list of macro calls each week. The following
code will read the directory listing of Excel files and
generate the list of macro calls, one for each Excel file.

Figure 1. Generating Macro Calls

1 %let week = 1;
2 %let flashpd = 9;
3 %let path = C:\Sesug\PD&flashpd._WK&week.\ ;
4 %sysexec md "&path.sas";
5 libname flash "&path.sas";

6 options noxwait noxsync obs=max;
7 %sysexec dir &path.>&path.dir.txt;

8 data _null_;
9 X = sleep(3);
10 run;

11 data work.fddir (drop=dirstuff);
12 infile "&path.dir.txt" lrecl=132 pad missover;
13 input @01 dirstuff $char132. @;
14 if index(dirstuff,'XLS') or index(dirstuff,'xls') then input @40
model $8.;
15 run;

16 data _null_;
17 file "&path.dm.txt";
18 set work.fddir;
19 put '%' 'loopit('model+(-1)');';
20 END;
21 run;

Line 1 and 2 are the only two lines that the programmer
needs to update each week. Line 1 is the week number
and line 2 is the period(month) number. The %let
statement creates a global macro variable that can be
used at any time during this SAS session. The variables
created, “week” and “flashpd”, are used in line 3 to assign
a value to “path”. This folder already exists and contains
the Excel extracts sent by the district managers. Line 4
uses the macro statement %SYSEXEC. This macro
statement will immediately execute the operating system
command that follows. In this case, we use the system
command md (make directory) to create a subfolder
named “sas”. Line 9 uses the system command dir to
generate a text file, “dir.txt”, containing the directory
listing. (See Figure 2) You can see SAS put into sleep
mode for 3 seconds in lines 8-10 for the purpose of giving
the system time to generate this text file before running
the next lines of code. This number may need to be
increased to suit your system. Lines 11-15 demonstrate
the use of input and indexing statements to pull each file
name out of “dir.txt”. The result is a SAS data set

“work.fddir” containing the character variable “model”, the
list of file names from “dir.txt”. Lines 16-21 create a text
file, “DM.txt”. “DM.txt” contains a list of macro calls to the
macro “loopit”. The list of macro calls is created using the
put statement, concatenating the “% loopit” text with the
names of Excel files. See Figure 3 for the contents of
“DM.txt”.

Figure 2. Contents of “dir.txt”
 Volume in drive C has no label.
 Volume Serial Number is 3821-FEF7

 Directory of C:\Sesug\PD9_WK1\ ;

05/02/2003 11:22a <DIR> .
05/02/2003 11:22a <DIR> ..
04/30/2003 04:38p 701,952 01715000.xls
04/30/2003 12:02p 968,192 10150050.xls
04/30/2003 02:29a 224,768 10230001.xls
04/30/2003 06:07p 402,432 10380050.xls
04/30/2003 03:32p 900,096 10435002.xls
04/28/2003 06:35p 213,504 10635000.xls
04/30/2003 08:32a 309,760 10690001.xls
04/30/2003 06:57p 744,448 10730050.xls
…

Figure 3. Contents of “DM.txt”
%loopit(01715000);
%loopit(10150050);
%loopit(10230001);
%loopit(10380050);
%loopit(10435002);
%loopit(10635000);
%loopit(10690001);
%loopit(10730050);
…

Now that we have macro calls written, we can have the
macro “loopit” run once for each file name.

Using DDE to Read the Excel Files

DDE (Dynamic Data Exchange) allows the dynamic
exchange of data between Windows applications. In a
client/server relationship, the SAS System acts a client by
requesting data, sending data, or sending commands to
the server application. In the example in this paper, Excel
2000 is the server application, although any application
that supports DDE as a server can communicate with the
SAS System. To use DDE is SAS, issue the file name
statement:

FILENAME filref DDE ‘DDE-triplet’ <DDE-options>

The DDE-triplet argument refers to the DDE external file in
the following form:

‘application-name|topic!item’

(SAS Institute, 1999)

In this project, DDE is used to issue system commands,
such as opening a specified Excel worksheet, to read data
from an Excel sheet, and to put data into an Excel sheet.
The syntax above will be referred to in the examples.

Figure 4. Beginning DDE Session
22 %include "C:\Sesug\flash_var.sas";

23 X "'C:\Program Files\Microsoft Office\Office\EXCEL.exe'";

24 DATA _NULL_;
25 X = SLEEP(3);
26 RUN;

27 FILENAME commands DDE 'EXCEL|SYSTEM';

Line 22 includes a piece of SAS code “flash_var.sas”.
“Flash_var.sas” contains a series of %Let statements.
The %Let statements names lists of variables that can
then be referenced later at any time in this SAS session
without having to re-type the list of variables. This is
helpful if the list of variables may change from week to
week. For example, the first line of code in
“Flash_var.sas” is “%Let FOODVAR = pd1_wk1_fc
pd1_wk1_ac pd1_wk2_fc pd1_wk2_fc...”

Line 23 uses the X statement to submit a command to the
operating system, and open a DDE server. It is here that
Excel is established as a DDE server. The path points to
where Excel.exe is located on your hard drive. Excel.exe
is launched, opening Excel. Please note that the XWAIT
and XSYNC options must be turned off (Figure 1, Line 6).
NOWAIT allows the command processor to automatically
return to the SAS system after the command is executed.
NOSYNC allows you to return to the SAS system without
closing the process generated by the X command. You
can see sleep mode used again in lines 24 – 26, giving
the system 3 seconds to open Excel before the next lines
of code run. The filename statement in line 27 is used to
establish a DDE link to the Excel application. This will
allow us to later issue commands to Excel, using the
fileref “commands”. In the DDE triplet, the application-
name is Excel, the topic is SYSTEM and the item is not
specified.

Each file received from the district managers is in the
same layout. The columns represent the forecast and
actual weekly time periods, from 1 to 52. The client
accounts are stacked on top of each other with the rows
representing the different financial data and statistics that
is collected each client account. See Figure 5 for an idea
of the Excel files’ layout.

Figure 5. Example of Excel Files’ Layout

Account Week Begining Date----------> 08/31/02
Account Week Ending Date------------> 09/06/02
Version FlashU02.5 Sept Sept
Unit Name/Number: (Roll-up) * * * Week 1 * * *
Sandra Archer - DM Roll-up Forecast Actual
70306308 Forecast Actual

#1 Board Sales State University 0 0
 Board DCB Sales State University 0 0
 Non-Board Sales- Retail/AllOther State University 5,423 2,720
 Non-Board Sales- Catering State University 0 0
 Gratuity /Client Settlement /Mgt Fee State University 0 0
Total Sales (Before Profit Split) State University 5,423 2,720
 Reduction of sales for profit split State University 0 0
Total Sales/Rev (After profit split) State University 5,423 2,720
 Board Food Cost State University 0 1,702
 Board DCB Food Cost State University 0 0
 Non Board- Retail/Other Food Cost State University 2,549 0
 Non Board- Catering Food Cost State University 0 0
Total Food Cost State University 2,549 1,702
 Unit Staff Labor State University 764 983
 Managment Labor State University 652 0
Total Labor Costs State University 1,416 983
Controllable Cost State University 171 248
Non-Controllable Cost State University 486 36

#1 OPC State University 801 (249)

#2 Board Sales State College 0 0
 Board DCB Sales State College 0 0
 Non-Board Sales- Retail/AllOther State College 4,305 5,802
 Non-Board Sales- Catering State College 0 0
 Gratuity /Client Settlement /Mgt Fee State College 0 0

We are able to employ DDE within a macro because the
files received are in the same format.

Figure 6. DDE Macro
28 %macro loopit(model);
29 data _null_;
30 file commands;
31 put "[open(""&path.&model..xls"")]";
32 run;

33 filename flash1 dde
 "Excel|[&model..xls]PL!R55C2:R1440C216";

34 data work.food;
35 infile flash1 missover notab LRECL=10000
 dlm='09'x dsd;
36 informat desc client $char50. &FOODVAR comma10.0
 location client $char20
37 input desc $ client $ &FOODVAR

 location $ client $;
38 run;

39 data food;
40 set food;
41 where desc in("Total Sales/Rev (After profit split)"
 "OPC");
42 source="FD-&model”;
43 run;

44 filename dm dde "Excel|[&model..xls]PL!R5C2:R5C2";

45 data dm;
46 infile dm missover notab LRECL=10000

 dlm='09'x dsd;
47 informat district $char50.;
48 input district $;
49 run;

50 data fd&model.;
51 retain district;
52 set dm food;
53 retain district2;
54 if district^='' then district2=district;

55 if district='' then district=district2;
56 if desc="" then delete;
57 drop district2;
58 run;

59 data _null_;
60 file commands;
61 put "[File.Close()]";
62 run;

63 %mend;

Line 28 begins the macro “loopit”, which will receive one
macro variable, “model”. Recall that the macro calls have
already been created in a file “DM.txt”, with the macro
variable “model” as the names of the Excel files received.
(Figure 3)

Line 29 – 32 uses the DDE link established in line 27 and
a put statement to issue a command to the server
application (Excel). The command issued, open, will
open the Excel file (located in the path specified in line 3)
with the file name that is passed to this macro. Other
commands that Excel will accept from SAS include any
Excel macro commands, including save or quit. Note that
the Excel system must be open in order for SAS to pass
commands to it. Likewise, the Excel file must be open in
order for a data exchange between Excel and SAS to take
place using DDE.

Once the Excel file is opened, line 33 will establish a DDE
link to the specified range in Excel. In the DDE triplet, the
application-name is Excel, the topic is the file “&model”
with the tab name “PL” and the item is the range of data
from Row55, Column 2 to Row 1440, Column 216. This
link is named “flash1”.

The data step in lines 34 – 38 will read the data in the
specified range (flash1) into the SAS data set “work.food”
by means of an infile statement. The options on the infile
statement are for the following purposes: The missover
option specifies that SAS should continue to read in a
record, even if some value are missing. The notab option
prevents SAS from converting tabs in Excel to blanks.
The dlm = ‘09x” specifies that the file is tab delimited.
This is used as the row separations in Excel are
interpreted as tabs. The dsd option specifies that two
delimiters represent a missing value. The LRCL = option
specifies the record length (in bytes). The infile statement
reads in the variables listed, with &FOODVAR
representing the list of variables that was created by a
%let statement by including the code in figure 4, line 22.

The data step in lines 39 – 43 simply filter the data set to
only those records that we want to keep and adds a
variable "source" that includes the file name. This gives
us the ability to assign a source file to every record in our
data set.

In line 44, another DDE link is established for the data
range Row 5, Column 2. This cell in the spreadsheet
contains the name of the district manager who turned in
the file to us. Lines 45-49 use this DDE link to read in a
simple data set containing only one column and one
observation: the value of the cell containing the person’s
name. The data step in lines 50 – 58 creates a SAS data
set named “fd&model” where &model is the name of the

Excel file source data. The retain statement and
reassignment of variables are used to clean up the data
and copy the name of the district manager to every
record.

Finally, in lines 59 - 62, you can see that the file name
“commands” (established in figure 4, line 27) allows us to
use the put statement to send the File.Close command to
Excel. Excel will then close the file that was opened in
line 31. The Excel system will remain open in the
background. The %mend statement in line 63 ends the
macro “loopit”.

Figure 7. Calling the Macro
64 %include "&path.dm.txt";

65 data _null_;
66 file "&path.dmset.txt";
67 set work.fddir;
68 put 'fd' model+(-1);
69 run;

70 data fdrollup2;
71 set %inc "&path.dmset.txt";
72 run;

Figure 7 demonstrates that we can simply use a
%include statement to include the macro calls contained
in “dm.txt” (Figure 3). The macro will run once for each
Excel file and create a SAS data set by that name. Lines
65 - 69 use a similar trick to create a file “dmset.txt” that
contains a list of the SAS data set names. These
individual SAS data sets are then set together in lines 70
– 72.

Once in SAS, the data is validated and cleaned by
methods not covered by this paper. Then, it is
summarized by organizational hierarchy and prepared for
reporting. The output data set is called “weeklysum”.

Using DDE for Excel Report Generation

In order to use DDE to generate the reports with the same
format for each level of hierarchy in the company, we start
with an Excel report template. It is called
“Report_Template.xls”. In this template, we also used the
“Conditional Formatting” to pre-format the output, using
the bold font to distinguish the levels of hierarchy.

Figure 8. DDE Export Macro

176 %sysexec md "&path.Report";

177 options noxwait noxsync obs=max;
178 X "'C:\Program Files\Microsoft
 Office\Office\EXCEL.exe'";

179 DATA _NULL_;
180 X = SLEEP(3);
181 RUN;

182 FILENAME commands DDE 'EXCEL|SYSTEM';

183 %macro report(hier,name,outname);
184 data _null_;
185 file commands;
186 PUT '[OPEN("C:\Sesug\Report_Template.xls")]';
187 run;

188 FILENAME report DDE

"Excel|[report_template.xls]sheet1!R7C1:R150C15"
NOTAB LRECL=100000;

189 DATA work.report;
190 retain b (-1) t '09'x;
191 set weeklysum;
192 where &hier.=&name.;
193 file report;
194 put vice_president t+b
195 region_manager t+b
196 district_manager t+b
197 location t+b
198 client t+b
199 sales_week_1_actual t+b
200 profit_week_1_actual t+b
201 sales_week_2_forecast t+b
202 profit_week_2_forecast t+b
203 sales_week_3_forecast t+b
204 profit_week_3_forecast t+b
205 sales_week_4_forecast t+b
206 profit_week_4_forecast t+b
207 sales_september_forecast t+b
208 profit_september_forecast t+b;
209 run;

210 data work.title;
211 title="Sales & Profit Report - September, 2003";
212 run;

213 FILENAME title DDE

"Excel|[report_template.xls]sheet1!R3C3:R3C3" notab;

214 data work.reporttitle;
215 retain b (-1) t '09's;
216 set WORK.title;
217 file title;
218 put title;
219 run;

220 data _null_;
221 file commands;
222 put

"[Save.as(""&Path.Report\&hier._Report_&outname..xls
"")]";

223 put "[Close]";
224 run;

225 %mend;

Line 176 uses the system command md (make directory)
to create a subfolder named “Report”. Line 177 – Line 182
is to begin DDE session (Please refer to Figure 4.
Beginning DDE Session).

Line 183 begins the macro “report”, which will produce
reports for each level of hierarchy (vice president, region
manager and district manager). It receives three macro
variables: “hier” is the level of hierarchy; “name” is used in
the Where statement later to generate a personalized
report; “outname” is used to name the output file. Line
184 – Line 187 opens the Excel report template
“Report_Template.xls”, which is already built before the
DDE export. Line 188 establishes the range of output in
the Excel template from Row7, Column 1 to Row 150,
Column 15.

Line 189-Line 209 will read the data from SAS dataset
“weeklysum” and output the data to the specified range
(report) in the Excel template. Line 190 the retain

statement assigns a backspace to “b” and a tab to “t”.
When the Put statement is used, the tab separates the
Excel columns, while the backspace counteracts the extra
space that Excel may insert. Line 192 uses the Where
statement to generate the personalized report. Line 194-
Line 208 uses the Put statement to tell SAS to export the
variables in work.report in that order, which is the order
we set up in the template. Line 210-Line 219 use the
same method (specify range and put SAS data to the
template) to output the title of the report.

Line 220-Line 224 saves the file under the “Report" folder
with the name specified in the macro call, and then closes
the active worksheet. The Excel system will remain open
in the background. The %mend statement in line 225
ends the macro “report”.

Figure 9. Calling the Macro “Report”
237 *Division Report;
238 %report(Div,"DIVISION",Division);

239 *Vice President Report;
240 %report(VP,"HAMILTON JONES",HJones);
241 %report(VP,"SANDRA ARCHER",SArcher);

242 *Region Manager Report;
243 %report(RM,"COREY GORDON",CGordon);
244 %report(RM,"MENGXI LI",MLi);
245 %report(RM,"PRESTON OLINGER",POlinger);
246 %report(RM,"SAMANTHA TYLER",STyler);

247 *District Manager Report;
248 %report(DM,"JIAN SHEN",JShen);
249 %report(DM,"JIM SMITH",JSmith);
250 %report(DM,"JOHN JOE",JJoe);
251 %report(DM,"LORI CARR",LCarr);
252 %report(DM,"MINDY SMITH",MSmith);
253 %report(DM,"PETER DENIS",PDenis);
254 %report(DM,"SANDY BRAD",SBrad);
255 %report(DM,"WEI LI",WLi);

The code in Figure 9 will produce reports for each level of
hierarchy with the name structure
“Hierarchy_Report_First&Lastname.xls”. In total 15
reports are generated. The reports are saved with the
name of the person who is to receive it.

Using SAS to Automatically Send out
Email Through Outlook

Figure 10. Sending Email Through Outlook
264 %Macro mail (sendee, attach);

265 filename mail email "Report";
266 data mail;
267 file mail;
268 put '!EM_TO!' &sendee.;
269 put "!EM_SUBJECT! Sales & Profit Report -
 September 2003";
270 put "";
271 put "Attached file is the Sales & Profit Report for
 September 2003.";
272 put "!EM_ATTACH! &path.\report\&attach." ;
273 put '!EM_SEND!';
274 put '!EM_NEWMSG!';
275 put '!EM_ABORT!';
276 run;

277 %Mend;

Sending email within SAS through Outlook is extremely
efficient and timesaving when distributing massive email
messages to a group of people with attachments.

An e-mail program that supports MAPI, VIM or SMTP is
required to use the SAS System's e-mail support.
Although you can use the SAS System to send
messages, you must use your e-mail program to view or
read messages.

Line 264 begins the macro “mail”, which will send out
emails to each level of hierarchy with the reports we
create for them.

Line 265 initiates SAS with the email function. The EMAIL
option is used as a keyword indicating the use of
electronic mail.

Line 268 replaces the current primary recipient addresses.
If a single address contains more than one word, you
must enclose that address in quotes. If you want to
specify more than one address, you must enclose each
address in quotes and the group of addresses in
parentheses.

Line 269 puts a subject in the subject line of the email.
Line 271 generates the text of the message. Line 272
attaches the Excel report. To specify more than one file,
you must enclose each filename in quotes and the group
of filenames in parentheses.

Line 273 sends the message with the current attributes.
Line 274 clears all attributes of the current message that
were set using the Put statement. Line 275 aborts the
current message.

Figure 11. Calling the Macro “mail”

279 %mail ("Jones, Hamilton",VP_Report_JJones.xls);
280 %mail ("Archer, Sandra",VP_Report_SArcher.xls);

281 %mail ("Gordon, Corey",RM_Report_CGordon.xls);
282 %mail ("Li, Mengxi",RM_Report_MLi.xls);
283 %mail ("Olinger, Preston",RM_Report_POlinger.xls);
284 %mail ("Tyler, Samantha",RM_Report_STyler.xls);

285 %mail ("Shen, Jian",DM_Report_JShen.xls);
286 %mail ("Smith, Jim",DM_Report_JSmith.xls);
287 %mail ("Joe, John",DM_Report_JJoe.xls);
288 %mail ("Carr, Lori",DM_Report_LCarr.xls);
289 %mail ("Smith, Mindy",DM_Report_MSmith.xls);
290 %mail ("Denis, Peter",DM_Report_PDenis.xls);
291 %mail ("Brad, Sandy",DM_Report_SBrad.xls);
292 %mail ("Li, Wei",DM_Report_WLi.xls);

The code in Figure 11 will call the macro “mail” and send
an email to each person with his or her personalized
report as an attachment.

Note: Microsoft Outlook XP and Outlook 2000 SR2
generate an extra prompt when you attempt to send email
automatically from the SAS system:

“A program is trying to automatically send e-mail on your
behalf. Do you want to allow this? If this is unexpected, it
may be a virus and you should choose "No".”

You then have a choice of three buttons: Yes, No, and
Help. To send the mail, select the Yes button.

To avoid this prompt, take the following actions:

1. The administrator needs to change the security settings
on the email server itself. Note that a qualified email
administrator is required to do this.

2. Another possibility is to use SMTP email to accomplish
the task because it talks directly to the SMTP email
server. However, SMTP email has certain restrictions on
attachments: only text files and zip files work in Version 8.
Release 8.1 or later is also required.

Conclusion

Consolidating tens, hundreds, even thousands of
Excel files, producing weekly, monthly, quarterly
reports in the same format and sending them out to
all levels of users in a short amount of time is not a
dream any more with the powerful, interactive SAS
product. The Macro, DDE and Automated Email we
covered here are only the tip of the iceberg of SAS
program. The more you explore, the more you can
do.

References

SAS Institute Inc., SAS Companion for the Microsoft
Windows Environment, Version 8, Cary, NC: SAS
Institute Inc, 1999. Pp.562

Contact Information:

Russell.Denslow@sodexhoUSA.com

Sandra.Archer@sodexhoUSA.com

Mengxi.Li@sodexhoUSA.com

